
Multi-threaded OpenSmalltalk VM: Choosing a Strategy for
Parallelization

Leon Matthes
leon.matthes@student.hpi.uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Marcel Taeumel
marcel.taeumel@hpi.uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Eliot Miranda
eliot.miranda@gmail.com
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Robert Hirschfeld
robert.hirschfeld@uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

ABSTRACT
Dynamic, object-oriented programming languages are widely re-
garded as enjoyable and easy to use. These languages lend them-
selves well to exploration and very short iteration cycles and feed-
back loops. However, many of them have no or limited support
for multithreading. Squeak, a modern Smalltalk programming en-
vironment that focuses on interactivity and programming experi-
ence, doesn’t support multithreading. We discuss multiple high-
level strategies employed by similar languages and runtime envi-
ronments to support parallel execution. Existing research and im-
plementations using the presented strategies are analyzed to find
a good fit for the Squeak/Smalltalk ecosystem. Due to Squeak’s
strong focus on interactivity and programming experience, we de-
cided for an approach with limited support for parallelization. Our
focus on a straight-forward implementation is based on our obser-
vation that reduction of pause times is more important for the pro-
gramming experience than a model for fully parallel execution.

KEYWORDS
Dynamic Programming Languages, Virtual Machine, Paralleliza-
tion

ACM Reference Format:
LeonMatthes, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld. 2024.
Multi-threaded OpenSmalltalk VM: Choosing a Strategy for Parallelization.
In Proceedings of PX/24 at <Programming> 24 (PX24). ACM, New York, NY,
USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PX24, March 11–12, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06…$15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Dynamic, object-oriented programming languages are widely pop-
ular, with JavaScript and Python as some of the most popular pro-
gramming languages of the last years1.

These languages are often praised as easy to use and beginner-
friendly, but have also held up to the demands ofmany professional
large-scale deployments. Therefore, it may sound surprising, that
these languages still often have very limited support for parallel
execution. Python is infamous for its “Global Interpreter Lock”,
which limits the VM to a single thread that executes Python code
at any one time.

With such a large user base, it is surprising that the standard
CPython VM never gained support for true parallelism. Today,
multicore systems are the norm in personal computing, and by de-
fault Python cannot make full use of the available hardware. Simi-
larly, other dynamic object-oriented languages such as Ruby, and
even JavaScript, also only support limited parallelization.

We explore the design decisions that dynamic programming lan-
guages face when adding support for parallel execution. Through
the lens of the Squeak/Smalltalk community, multiple strategies
for parallelization are discussed and compared. The comparison
will not only focus on best multithreaded performance, but also
consider trade-offs like required maintenance effort and the effects
on single-threaded programs.

Even though the requirements of the Squeak community de-
pend on values in their specific ecosystem, this comparison should
also help to understand why other similar languages have chosen
their respective strategies.

2 BACKGROUND
The Squeak2 system is an interactive programming environment
that allows programmers great flexibility in editing and creating
their own tools.

Squeak is based on the Smalltalk programming language [7].
The language is a dynamic, object-oriented programming language
with extensive support for run-time reflection. In Smalltalk, every-
thing is an object, including the Smalltalk code itself.
1According to the last years of the StackOverflow developer surveys: https://insights.
stackoverflow.com/survey
2https://squeak.org/

1

https://orcid.org/0009-0009-8156-7730
https://orcid.org/0000-0002-7559-6035
https://orcid.org/0009-0004-5604-1116
https://orcid.org/0000-0002-4249-6003
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://insights.stackoverflow.com/survey
https://insights.stackoverflow.com/survey
https://squeak.org/
Robert Hirschfeld
[PX/24] DRAFT – PLEASE DO NOT DISTRIBUTE

PX24, March 11–12, 2024, Lund, Sweden Leon Matthes, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld

This high level of reflection, combinedwith access to all develop-
ment tools from within the Squeak environment itself, allows pro-
grammer free rein over their own programming experience. The
freely modifiable tools include the Smalltalk source-to-bytecode
compiler, the debugger, various tools for object inspection, the
code browser, editor, and many more. Due to this flexible access,
Squeak makes prototyping and development of new language con-
cepts very easy.

Like many other dynamic languages, Smalltalk relies on a run-
time to achieve this high level of reflection. In the case of Squeak,
this runtime is the OpenSmalltalk Virtual Machine [14]3. This vir-
tual machine (VM) abstracts platform differences and therefore
provides a stable target that the dynamic language can rely on.

Figure 1 shows a conceptual block diagramof theOpenSmalltalk-
VM. It includes an execution engine (interpreter or just-in-time
compiler) that takes care of Smalltalk bytecode execution. In the
following we will use the term ”interpreter” to cover both alterna-
tives In a fully reflective language like Smalltalk, the interpreter
reads the bytecode from the object memory and executes it. As
Smalltalk code may freely modify the object space, it can therefore
modify its own code.

Another important system provided by the OpenSmalltalk-VM
is automatic garbage collection. As the VM prescribes the layout
of the object memory, it can automatically collect objects that are
no longer reachable. This removes a difficult task from the pro-
grammers and allows them to focus more on their programs de-
sired behavior. The Garbage Collector is a system independent
from the Interpreter. In the single-threaded OpenSmalltalk-VM,
the Garbage Collector and the Interpreter take turns. Each system
therefore has independent, exclusive access to the Object Memory.

In the multicore era, this presents some challenges, however.
As the Interpreter and Garbage Collector expect exclusive access
to the Object Memory, the VM is entirely unable to use multiple
threads for these primary functions. Squeak in turn is not able to
take full advantage of modern multicore systems, as the VM does
not support running multiple interpreters at once.

We explore different possibilities to achieve parallel execution
of multiple Interpreter instances. Parallelization of Garbage Collec-
tion and Interpretation at the same time is out of scope for this pa-
per. For this reason any further diagrams don’t include theGarbage
Collector. The reader should keep in mind that the Garbage Col-
lector may still need exclusive access to the object space in all the
presented scenarios, which can limit the potential for parallelism.
To address this concern, existing literature describes multiple ap-
proaches that can be used to achieve concurrent interpretation and
garbage collection [11][18].

3 OVERVIEW
In the following sections, different high-level approaches to par-
allelization of object-oriented language interpreters are discussed.
Whilst the primary motivation is to decide on an approach to use
in the Smalltalk ecosystem, many of the points made here can ap-
ply to other language ecosystems as well. Therefore, the follow-
ing sections will remain rather general and refer to languages that
are hosted by a VM in general, rather than mentioning Smalltalk

3See also: https://github.com/opensmalltalk/

Virtual Machine

Object Memory
Data Code

Interpreter Garbage
Collector

Hosted Language (Smalltalk)

Operating System

Figure 1: Block diagram of the OpenSmalltalk-VM

specifically. Many of the presented approaches have already been
implemented in other language ecosystems and existing implemen-
tations will be discussed.

The sections are ordered by the amount of parallelization within
the virtual machine itself, from least to most. This roughly corre-
sponds to the amount of work required to support the implemen-
tation within the virtual machine itself. It does not necessarily
correlate to the amount of parallelism possible in the hosted lan-
guage.

The sections are:

• Parallel Operating System Processes (section 4)
• Multiple interpreters with a Global lock (section 5)
• Parallel interpreters with Shared Immutable State (section 6)
• Parallel interpreters with Shared Mutable State (section 7)

For the following discussion in section 8, the focus will be on
comparing which implementation approach fits best for the needs
of the OpenSmalltalk-VM, as well as the Squeak community at
large. This includes the requirements of the virtual machine and its
implementors, as well as the needs of the users (Smalltalk program-
mers). For this reason, the focus is not entirely on performance,
but includes other trade-offs, like the required implementation and
maintenance effort, which cannot be ignored in a relatively small
community.

4 MULTIPLE OPERATING SYSTEM
PROCESSES

All relevant operating systems provide support for multiple pro-
cesses with isolated memory.

These operating system processes can be used to run multiple
instances of the language virtual machine in isolation. Every in-
terpreter will therefore have an isolated object space in which no
race conditions can occur. This strategy can be often be employed
without changes to the virtual machine. Often it can be imple-
mented entirely in the hosted language itself. As long as the vir-
tual machine exposes the required operating system functions, it
is already capable of supporting this use case. Because this ap-
proach starts at a higher level of abstraction than the VM itself,
it is also entirely compatible with all other approaches presented
in this chapter. Figure 2 depicts a conceptual overview of this ap-
proach.

2

https://github.com/opensmalltalk/

Multi-threaded OpenSmalltalk VM: Choosing a Strategy for Parallelization PX24, March 11–12, 2024, Lund, Sweden

Hosted Language

Virtual Machine

Hosted Language

Virtual Machine

Hosted Language

Virtual Machine

Operating System

Figure 2: Parallelization using multiple OS Processes

Apart from the creation and management of OS processes, the
operating system must also provide facilities for communication
between processes (i.e. interpreter instances) to allow for synchro-
nization. The communication protocols provided by the OS usually
support inter-process communication via binary data streams (e.g.
pipes, etc.), but not objects. As the synchronization is managed by
the host language, the host language itself must be able to convert
objects to and from binary streams. As any given object may repre-
sent an arbitrarily large directed graph, this is unfortunately not a
trivial problem to solve for the general case. Grochowski et al. list
and discuss some of the challenges involved in (de-)serialization,
including platform differences, polymorphism, and multiple refer-
ences to the same object. [8]

The “Distributed Smalltalk” [4] implementation explores a very
similar approach. Bennet describes a system consisting of mul-
tiple independent Squeak/Smalltalk instances that are networked
together and can therefore work in parallel. The system relies pri-
marily on message passing as a means of communication between
interpreter instances. Bennet shows that messages can be con-
verted to a binary representation efficiently and can be relied upon
for communication. The individual operating system processes
can be seen as objects, which send messages to each other, which
fits well with the object-oriented nature of Squeak. Synchronizing
code changes unfortunately remains a difficult problem that isn’t
entirely solved, as class incompatibilities can lead to data transfers
being rejected. Virtual machine tasks like Garbage Collection also
need to be re-implemented in the host language for shared data.

To summarize, the approach of using multiple isolated virtual
machine instances requires minimal, if any, changes to the virtual
machine. Some implementations like “Distributed Smalltalk” even
implement this entirely in the hosted language. This approach can
therefore be an option for languages where there is no parallel VM
available, and even used in addition to any of the other approaches
presented. The downside is a considerable amount of management
needed in the hosted language. There is also a performance over-
head, as all communication between interpreter instances must
change format and pass through the OS.

5 MULTIPLE INTERPRETERS WITH A
GLOBAL LOCK

For an existing single-threaded VM, an easy first step is to instanti-
ate multiple interpreter instances, but guard the object space with
one global lock that only allows a single interpreter to run at a time
(see Figure 3).

Virtual Machine

Object
MemoryInterpreter

Interpreter

Interpreter Global Lock

Hosted Language

Operating System

Figure 3: Multiple interpreters with a Global Lock

At first glance this may sound like it is no different to a single-
threaded VM, and no parallel execution can take place. This only
changes when callouts to external code are considered. In case an
interpreter calls out to an operating system function or a library
that does not modify the object space, it is possible to release own-
ership of the object space. During that time, another interpreter
can acquire the lock and execute code in the hosted language.

This approach is still used by the standard Python and Ruby
VMs, despite ample demand in the community for a more parallel
VM. The rest of this section explores these implementations and
their characteristics.

5.1 Python Global Interpreter Lock
The CPython virtual machine includes a “Global Interpreter Lock”
(GIL). An interpreter that wants to execute Python code must ac-
quire the GIL. The lock ensures that only a single interpreter may
execute Python code or modify the Python object space at any
given time. External code (typically extensions written in C) may
unlock the CPython GIL and therefore allow another interpreter
to run. In Python this is most often used in I/O operations, whilst
waiting for or sending data.

For the CPython VM this implementation results in very good
single-threaded performance and good parallelism of I/O bound
threads. Larry Hastings lists multiple alternative implementations
that would remove the GIL, but all the options explored thus far
have seen degraded single-threaded performance [9]. Due to this
single-threaded performance degradation, no attempt to remove
the GIL has been approved by the CPython maintainers yet.4

On the other hand, research by Beazley [3] has explored the lim-
itations of the GIL. CPython relies on operating system scheduling
of threads, which historically led to a single thread repeatedly ac-
quiring the GIL which starved other threads.

A redesign by Antoine Pitrou for Python 3.2 has changed the
behavior to enforce a switch of the GIL owner. However, this im-
plementation causes increased latency of I/O threads, if they are
competing with compute threads that rarely release the GIL.

4See this statement about potential removals of the GIL: https://www.artima.com/
weblogs/viewpost.jsp?thread=214235

3

https://www.artima.com/weblogs/viewpost.jsp?thread=214235
https://www.artima.com/weblogs/viewpost.jsp?thread=214235

PX24, March 11–12, 2024, Lund, Sweden Leon Matthes, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld

Beazley proposes that the GIL behavior could become control-
lable and predictable by introducing thread priorities and preemp-
tion within Python.

5.2 Ruby Global VM Lock
“La concorrenza in Ruby” by Moro details the behavior of different
versions of CRuby [15]. Support for multiple threads was added
in CRuby 1.9, which also introduced a global lock. The Ruby com-
munity refers to this lock as the “Giant VM Lock”, or “Global VM
lock” (GVL). For simplicity, we will use the term “Global Inter-
preter Lock” (GIL) instead, as introduced above.

Ruby’s GIL behaves very similarly to that of Python, and suffers
from similar issues. It has been analyzed by Anjo, who has found
increased latency when threading, as well as unfair scheduling of
I/O threads when competing with compute threads [1].

For true parallelism, Moro recommends to use multiple OS pro-
cesses, as described in section 4. Ruby and Python both provide
libraries for this, the Process and multiprocessing modules respec-
tively.

Summary. Introducing a global lock is an easy way to paral-
lelize a VM without requiring the VM itself to be thread-safe. This
can take advantage of times during which no execution of the
hosted language would otherwise occur. The behavior and perfor-
mance of single-threaded applications remains largely unchanged,
which can be a desirable feature. If implemented naively, this
strategy can lead to unpredictable program behavior and lock con-
tention. Adding priorities to the threads and a preemption mecha-
nism could ensure the predictability of execution.

6 ISOLATED INTERPRETERS WITH SHARED
IMMUTABLE STATE

In this approach, multiple interpreters work in isolation. However,
immutable data may be shared between interpreters. Interpreters
can therefore reside in the same operating system process/virtual
machine and can be implemented with one thread per interpreter.

This approach lends itself well to implementing the Actor model
for concurrency/parallelization in the hosted language. Different
actors work independently of each other, but may exchange mes-
sages for communication. These messages can be implemented ef-
ficiently by using shared but immutable data.

Actors have successfully served as the parallel execution model
of the Erlang programming language [2]. Sasada and Matsumoto
have proposed an adaptation of this model for use in the Ruby pro-
gramming language [17].5 This has been implemented in CRuby in
the form of Ractors.6 Like the approach presented in section 4, this
model maps well to object-oriented languages. Actors are compa-
rable to objects that send messages to each other and encapsulate
their own state.

Compared to multiple OS processes, sharing immutable mem-
ory means removing the need for serialization of messages. This is
especially useful for object-oriented languages, as (de-)serialization

5The original proposal used the name “Guild” to refer to different isolated interpreters.
The name has later been changed to “Ractor” (Ruby Actor).
6https://docs.ruby-lang.org/en/master/ractor_md.html

Virtual Machine

InterpreterInterpreter Interpreter

Mutable
Objects

Mutable
Objects

Mutable
Objects

Shared Immutable Objects

Hosted Language

Operating System

Figure 4: Multiple interpreters with shared immutable state

of objects is non-trivial in complex object graphs. The Ractor im-
plementation has shown that creating shared immutable state can
be achieved by simpler means, by either:

• Marking objects as read-only
• Moving object ownership between interpreters
• Recursively copying unshareable objects

Especially the first two approaches are very efficient, as they can
be implemented by setting flags on the objects, without the need
to copy any data.

Because shared objects are immutable, parallel access to these
objects is possible. State Modifications however only affect objects
that are accessible by a single interpreter, therefore no synchro-
nization is required when objects are mutated. Only global mu-
table operations like garbage collection need to be synchronized.
For this reason, the actors model can provide a good trade-off be-
tween implementation cost in the virtual machine and potential
for parallel execution in the host language.

Depending on the required level of isolation, some synchronized
mutable state may still be required. Ruby, like Smalltalk, allows for
runtime reflection andmodification (i.e. access to classes and other
parts of the code). These changes to the program itself affect all
interpreters. The virtual machine implementation must therefore
ensure that these changes can be done safely.

In CRuby, shared state that must be synchronized includes:
• Global variables
• Objects representing code (i.e. Class, Module, etc.)
• Garbage collection state
• The Ractor object itself

The virtual machine synchronizes most of this state by only al-
lowing the main Ractor to mutate (and in some cases even read)
the shared state. However, the documentation warns that this can
still lead to some race conditions in Ruby code.

For the hosted language, the actor model provides a system for
parallel execution with little management required in the hosted
language itself. The immutability of shared state prevents a large
class of issues that may occur in shared mutable state (e.g. race
conditions). Deadlocks are still possible, if actors are circularly

4

https://docs.ruby-lang.org/en/master/ractor_md.html

Multi-threaded OpenSmalltalk VM: Choosing a Strategy for Parallelization PX24, March 11–12, 2024, Lund, Sweden

waiting on messages [5].7Not allowing shared mutable state does
however mean that certain parallel programming patterns are not
possible to use in the hosted language.

As Smalltalks object model and reflection capabilities are very
similar to those of Ruby, an implementation of this approach for
use in Squeak could be implemented by closely following CRubys
Ractor design. Shared state could be implemented by using read-
only objects, which Smalltalk already supports. An important dif-
ference is that Smalltalk developers can currently freely change
the read-only flag by calling Object>>#setIsReadOnlyObject:. An
additional flag would have to be added to ensure shared objects
cannot be made writable again.

7 PARALLEL INTERPRETERS WITH SHARED
MUTABLE STATE

The implementation strategy that provides the most flexibility to
the hosted language is to provide a fully thread-safe virtual ma-
chine. For such an implementation, the virtual machine must en-
sure that it can keep all contracts even when multiple interpreters
are modifying the object space and executing byte-code in parallel.

Meier and Rigo compare multiple options that can be used to
achieve parallel execution [12]. Options include fine-grained lock-
ing, as well as hardware and software transactional memory (HT-
M/STM).Whichmethodology to use depends entirely on the needs
of the virtual machine and the host language. As a virtual machine
consists of many systems that must all be thread-safe, implement-
ing a virtual machine in a thread-safe manner is no trivial task.

For the hosted language on the other hand, having a fully thread-
safe VM provides the most flexibility, as it has full access to paral-
lelization. The potential for parallel performance scaling is there-
fore not limited by the virtual machine. However, programmers of
the hosted language must be aware of the safety and correctness
implications of parallel execution and handle synchronization of
data structures correctly. This may require additional locking and
management of data structures inside the hosted language itself,
further increasing the amount of effort required for this approach.

It should also be noted that simply allowing parallel execution
in the virtual machine may not necessarily improve performance
of the hosted language. The RSqueak/VM by Felgentreff et al. [6]
has shown that a naive implementation may even degrade perfor-
mance considerably. Their implementation uses STM to imple-
ment thread-safe interpreters in Squeak/Smalltalk. This reduced
single-threaded performance considerably and only improvedmul-
tithreaded performance in a few cases. Some multithreaded work-
loads like the Mandelbrot set even exhibited worse performance
with multiple threads than without threading support.

On the other hand, works by Meier et al. show that it is possible
to use STM for parallelizationwith success. Theymodify the PyPy8

7The Storm language platform presents an interesting solution to this problem. Every
OS thread includes cooperatively scheduled user threads on top of the OS threads.
When a message is passed from one thread to another, a new user thread is created
to execute the corresponding function. This reduces opportunities for deadlocks, as
messages don’t have to be received manually. Newmessages can always be processed.
As Smalltalk includes processes, which are analogous to Storms user threads, this
solution could be a reasonable fit for Smalltalk as well.

See: https://storm-lang.org/Language_Reference/Storm/Threading_Model.html
8https://doc.pypy.org/en/latest/index.html

Virtual Machine

Object
MemoryInterpreter

Interpreter

Interpreter
Thread-Safe

Access

Hosted Language

Operating System

Figure 5: Multiple interpreters with shared mutable state

VM using a sophisticated STM approach that yields speedups in
the range of 1.5x to 6.9x with 8 threads [13].

Implementors should keep in mind that fully parallel VMs tend
to produce overhead in single-threaded workloads. This has been
observed in the implementation by Meier et al., Felgentreff et al,
and by Pallas and Ungar in their “Multiprocessor Smalltalk” imple-
mentation [16].

8 DISCUSSION
At first glance, a fully thread-safe virtual machine may seem like
the no-compromises solution to parallelization.

For the Squeak/Smalltalk community, implementing such a VM
may still not be the ideal. The implementation cost and complexity
of such a VM is comparatively high. Depending on the number
of VM maintainers available, implementing full thread-safety may
tie up a significant percentage of development time, and may even
lead to an unstable final product.

Two of the authors already explored how the values of open-
ness, liveness, directness, malleability and feedback in the Squeak
community favor Repairability over Reuse [19]. For this reason, a
lot of features have been rewritten and are maintained in Small-
talk. This includes the VM itself, which is written in (a subset of)
Smalltalk [10][14]. For Smalltalk developers this offers the better
experience, as they can use familiar and powerful tools to modify
all parts of their system, at the cost of having to maintain more
code themselves.

To keep this large code base manageable, the Squeak commu-
nity prefers covering 80% of use cases over supporting all edge-
cases. Any missing cases can be easily implemented when needed.
With this culture in mind, the community benefits more from a
less parallel VM implementation and investing the time saved into
other VM features. Especially due the increased maintenance ef-
forts, theminimal implementation that still meets the requirements
of Squeak can be considered ideal. Other small language communi-
ties may equally benefit more from a less parallel implementation.

In the Squeak system, interactivity and feedback to the user are
of utmost importance. Longer computations are usually consid-
ered acceptable, as Squeak includes concurrency primitives that

5

https://storm-lang.org/Language_Reference/Storm/Threading_Model.html
https://doc.pypy.org/en/latest/index.html

PX24, March 11–12, 2024, Lund, Sweden Leon Matthes, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld

can keep the interactive environment running and provide feed-
back to the user during wait times. Interruptions of the interactive
environment can however be caused by an interpreter that needs
to execute external code written in another language (usually C)
or interact with the operating system. The primary motivation
for parallelization in Squeak is therefore to avoid times when no
Smalltalk code is running and the interactive system comes to a
halt. This can be solved by using multiple interpreters that can
take over in case one blocks.

Therefore, theminimal parallelization strategy that supports this
requirement is a GIL-based implementation (see section 5). Inter-
preters can unlock the object space when they are executing exter-
nal code and another interpreter can continue execution of the in-
teractive environment. It is also a good fit for the Squeak/Smalltalk
community due to a multitude of other factors:

• The Squeak community is small, with few VM maintainers
available.

• Extensive runtime reflection capabilities make synchroniza-
tion of the object space difficult.

• Themain GUI framework used in Squeak (calledMorphic) is
currently entirely single-threaded, reducing its performance
should be avoided.

• Smalltalk Process instances are scheduled with priorities,
which could avoid issues with GIL-contention.

• An actor-based implementation similar to Rubys Ractors pro-
vides a reasonable path forward, should a more parallel im-
plementation be desired in the future.

With a simpler parallelization strategy, the VMmaintainers can
focus on other features. For example, adding Incremental Garbage
Collection could bemore beneficial to the goal of interactivity than
a fully parallel VM. It would remove noticeable stutters caused by
the current fully synchronous Garbage Collection.

Larger ecosystems can also benefit from the use of separate
VMs to optimally support single threaded and multithreaded pro-
grams. Both the Ruby and Python communities have chosen this
route which has resulted in a great number of VM options for both
languages, with some focused on ease of use and single-threaded
performance, and others focused on multithreaded performance.
Smaller communities should be careful though, as they can risk
fragmenting maintenance efforts in the implementation of mul-
tiple VMs. Libraries of the hosted language must then also be
checked for compatibility with multiple VMs, which can further
increase the workload.

9 CURRENT PROTOTYPE
Weare currentlyworking on a prototype of theGIL-based approach
in the OpenSmalltalk-VM. The prototype is already merged into
the main Squeak source tree,9 but disabled by default.

As expected, the implementation has proven reasonably simple.
The simple semantic of unlocking and re-acquiring the GIL is easy
and ergonomic to use, which provides a good experience to the
developers that want to add threading to external code. Retain-
ing liveness and interactivity is therefore easy to do, which solved
the most pressing issues around long-running external code. Com-
pared to CRuby and CPython, Squeak includes priorities and a
9http://source.squeak.org/VMMaker.html

scheduler. Preliminary results support the theory that this is ben-
eficial, as using this scheduler could fix latency issues and avoid
contention on the GIL.

We have however found two new issues that are specific to the
Squeak-based implementation. The first issue is around state per-
sistence. The Squeak system state is saved when quitting the VM.
Unfortunately, this doesn’t apply to threads that are currently ex-
ecuting external code, which lose their state. We are currently ex-
ploring different solutions to this problem.

Additionally, the current implementation automaticallymanages
a thread-pool, instead of assigning a single thread for each Small-
talk process. This allows us to avoid some threads switches, but
leads to incompatibilitieswith certain pieces of external code. Some
low-level functions need to be called from a specific thread.10 Adding
thread affinity to Smalltalk processes gives the user the required
tools to solve this issue.

Squeaks built-in tooling allows us to easily support Smalltalk
developers with this new feature. We have adapted the Process
Browser, such that it can display which Processes are currently
executing in another thread. To inspect which threads are in use
at a given time, we have added a custom inspector that graphs
this information. The VM profiler has also been adapted to show
data from individual threads. We hope that these changes provide
Smalltalk developers with a good experience when using paral-
lelism within Squeak.

All in all the current prototype is promising. It allows us to solve
the problem of keeping interactivity during long-running external
code, without an overly complicated implementation. For the fu-
ture we aim to stabilize the prototype so that we can enable it by
default.

10 CONCLUSION
There are several high-level strategies to parallelize virtual ma-
chines of dynamically-typed programming languages. Unless mul-
tithreaded scaling is chosen as the only goal, none of those strate-
gies seemed an ideal fit. Because of that, many of the presented
approaches remain in use in real world systems despite their often
limited support for parallel execution.

Squeak/Smalltalk’s primary motivation for supporting parallel
execution is to reduce or avoid pauses in interpretation of Smalltalk
when executing external code. From the approaches discussed, a
limited parallelization is proposed as the best fit. For this require-
ment, the approach discussed in section 5 (Multiple Interpreters
with a Global Lock) is sufficient and requires little effort compared
to the other approaches.

REFERENCES
[1] Ivo Anjo. 2023. Understanding the ruby global vm lock (gvl) by observing it.

RubyKaigi Ruby Conference. Nagano, Japan. (2023). https://ivoanjo.me/blog/
2023/07/23/understanding-the-ruby-global-vm-lock-by-observing-it/.

[2] Joe Armstrong. 2010. Erlang. Communications of the ACM , 53, 9, 68–75.
[3] David Beazley. 2010. Understanding the python gil. PyCON Python Confer-

ence. Atlanta, Georgia. (2010). https://dabeaz.com/python/UnderstandingGIL.
pdf.

10This includes event handling on macOS, which must happen on the main
thread, as well as OpenGL calls, which operate on the context of the current
thread. (See: https://developer.apple.com/library/archive/documentation/Cocoa/
Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html and
https://www.khronos.org/opengl/wiki/OpenGL_and_multithreading).

6

http://source.squeak.org/VMMaker.html
https://ivoanjo.me/blog/2023/07/23/understanding-the-ruby-global-vm-lock-by-observing-it/
https://ivoanjo.me/blog/2023/07/23/understanding-the-ruby-global-vm-lock-by-observing-it/
https://dabeaz.com/python/UnderstandingGIL.pdf
https://dabeaz.com/python/UnderstandingGIL.pdf
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://www.khronos.org/opengl/wiki/OpenGL_and_multithreading

Multi-threaded OpenSmalltalk VM: Choosing a Strategy for Parallelization PX24, March 11–12, 2024, Lund, Sweden

[4] John K. Bennett. 1987.The design and implementation of distributed smalltalk.
SIGPLAN Not., 22, 12, (Dec. 1987), 318–330. doi: 10.1145/38807.38836.

[5] Mats Cronqvist. 2004. Troubleshooting a large erlang system. In Proceedings
of the 2004 ACM SIGPLAN Workshop on Erlang (ERLANG ’04). Association for
Computing Machinery, Snowbird, Utah, USA, 11–15. isbn: 1581139187. doi:
10.1145/1022471.1022474.

[6] Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirschfeld. 2016. How
to build a high-performance vm for squeak/smalltalk in your spare time: an
experience report of using the rpython toolchain. In Proceedings of the 11th Edi-
tion of the International Workshop on Smalltalk Technologies (IWST’16). Associ-
ation for ComputingMachinery, Prague, Czech Republic. isbn: 9781450345248.
doi: 10.1145/2991041.2991062.

[7] Adele Goldberg and David Robson. 1983. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.

[8] Konrad Grochowski, Michał Breiter, and Robert Nowak. 2019. Serialization in
object-oriented programming languages. In Introduction to data science and
machine learning. IntechOpen.

[9] Larry Hastings. 2015. Python’s infamous gil. PyCon Python Conference. Mon-
tréal, Canada. (2015).

[10] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the future: the story of squeak, a practical smalltalk written in itself.
In Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA ’97). Association
for Computing Machinery, Atlanta, Georgia, USA, 318–326. isbn: 0897919084.
doi: 10.1145/263698.263754.

[11] Richard Jones, Antony Hosking, and Eliot Moss. 2023. The garbage collection
handbook: the art of automatic memory management. CRC Press.

[12] Remigius Meier and Armin Rigo. 2014. A way forward in parallelising dy-
namic languages. In Proceedings of the 9th International Workshop on Imple-
mentation, Compilation, Optimization of Object-Oriented Languages, Programs
and Systems PLE (ICOOOLPS ’14). Association for Computing Machinery, Up-
psala, Sweden. isbn: 9781450329149. doi: 10.1145/2633301.2633305.

[13] Remigius Meier, Armin Rigo, and Thomas R. Gross. 2018. Virtual machine de-
sign for parallel dynamic programming languages. Proc. ACM Program. Lang.,
2, OOPSLA, (Oct. 2018). doi: 10.1145/3276479.

[14] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls. 2018. Two
decades of smalltalk vm development: live vm development through simula-
tion tools. In Proceedings of the 10th ACM SIGPLAN International Workshop
on Virtual Machines and Intermediate Languages (VMIL 2018). Association for
Computing Machinery, Boston, MA, USA, 57–66. isbn: 9781450360715. doi:
10.1145/3281287.3281295.

[15] Federica Moro. 2010. La concorrenza in Ruby. http://hdl.handle.net/20.500.
12608/14024. Read in English and translated using DeepL Translate.

[16] J. Pallas and D. Ungar. 1988. Multiprocessor smalltalk: a case study of a multi-
processor-based programming environment. In Proceedings of the ACM SIG-
PLAN 1988 Conference on Programming Language Design and Implementation
(PLDI ’88). Association for ComputingMachinery, Atlanta, Georgia, USA, 268–
277. isbn: 0897912691. doi: 10.1145/53990.54017.

[17] Koichi[耕一] Sasada[笹田] and Yukihiro[行弘] Matsumoto[松本]. 2016. A
proposal for a new concurrent execution model in ruby 3 [ruby 3に向けた新
しい並行実行モデルの提案]. Transactions of Information Processing Society
of Japan, Programming (PRO) [情報処理学会論文誌プログラミング (PRO)].
Read in English and translated using DeepL Translate.

[18] KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly,
Anmol Sahoo, Sudha Parimala, Atul Dhiman, and Anil Madhavapeddy. 2020.
Retrofitting parallelism onto ocaml. Proceedings of the ACM on Programming
Languages, 4, ICFP, (Aug. 2020), 1–30. doi: 10.1145/3408995.

[19] Marcel Taeumel and Robert Hirschfeld. 2022. Relentless repairability or reck-
less reuse: whether or not to rebuild a concernwith your familiar tools andma-
terials. In Proceedings of the 2022 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software (On-
ward! 2022). Association for Computing Machinery, Auckland, New Zealand,
185–194. isbn: 9781450399098. doi: 10.1145/3563835.3568733.

Received 08. Feb. 2024; accepted 18. Feb. 2024; revised 04. Mar. 2024

7

https://doi.org/10.1145/38807.38836
https://doi.org/10.1145/1022471.1022474
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/2633301.2633305
https://doi.org/10.1145/3276479
https://doi.org/10.1145/3281287.3281295
http://hdl.handle.net/20.500.12608/14024
http://hdl.handle.net/20.500.12608/14024
https://doi.org/10.1145/53990.54017
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3563835.3568733

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 Multiple Operating System processes
	5 Multiple Interpreters with a Global Lock
	5.1 Python Global Interpreter Lock
	5.2 Ruby Global VM Lock

	6 Isolated interpreters with shared immutable state
	7 Parallel interpreters with shared mutable state
	8 Discussion
	9 Current prototype
	10 Conclusion

