
Unanticipated Progress Indication
Continuous Responsiveness for Courageous Exploration

Marcel Taeumel
marcel.taeumel@hpi.de
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Jens Lincke
jens.lincke@hpi.uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Robert Hirschfeld
robert.hirschfeld@uni-potsdam.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

ABSTRACT
Scripting environments support exploration from smaller programs
to larger systems. From original Smalltalk workspaces to modern
Python notebooks, such tool support is known to foster under-
standing. However, programmers struggle with unforeseen effects
from script execution, disrupting their thoughts. Unexpectedly long
response times, in particular, cause frustration due to progress info
not being provided automatically for ad-hoc scripting tasks. In
Smalltalk systems, experienced programmers can interrupt an un-
responsive environment to look for such info manually. We propose
an automatic approach for progress indication, using a watchdog
that periodically scans the stack of script workers for known heuris-
tics to then derive task identity, label, and progress metrics. Using
Squeak/Smalltalk as an object-oriented, single-threaded, coopera-
tive scripting environment, we argue that simple heuristics for list
enumeration or other patterns can (1) keep users informed while
(2) leaving scripts untouched and (3) mostly retaining execution
performance. We believe that Unanticipated Progress Indication will
encourage programmers to experiment with library interfaces and
domain artifacts more often, which will reduce their cognitive load
for an expedient programming experience.

CCS CONCEPTS
• Software and its engineering→ Integrated and visual devel-
opment environments; Scripting languages; Software prototyping;
• Human-centered computing → Interactive systems and
tools; User interface programming.

KEYWORDS
scripting, objects, Smalltalk, user interface, program comprehen-
sion, responsiveness, flow, exploration

ACM Reference Format:
Marcel Taeumel, Jens Lincke, and Robert Hirschfeld. 2024. Unanticipated
Progress Indication: Continuous Responsiveness for Courageous Explo-
ration. In Companion Proceedings of the 8th International Conference on the
Art, Science, and Engineering of Programming (<Programming> ’24 Compan-
ion), March 11–14, 2024, Lund, Sweden. ACM, New York, NY, USA, 7 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming> ’24 Companion, March 11–14, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

Figure 1: Even simple, unsuspicious scripts should inform
users if expected response times would disrupt the flow of
exploration. Descriptive progress indication can complement
users’ plans to move forward. While still blocking, an un-
responsive system would frustrate users quickly, even if it
would be just for half a minute. They do not want to be stuck
in the unknown.

1 INTRODUCTION
What is happening? The system feels unresponsive. Is it stuck?
Hm. Maybe endless recursion...or too much data? Will my script
finish eventually? Maybe. Let’s grab a coffee. Is it doing anything
at all? I had just typed the following snippet of Smalltalk code into
a workspace and evaluated it:

((Object allSubInstances
select: [:object | object isMorph])
collect: [:morph | morph color])
explore.

Just let me explore that list of colors! Hm. CPU load is high. That
is good...right? Memory consumption is still moderate. Should I
cancel the operation somehow? I could hit [CMD]+[.] and examine
the debugger...or just wait a little bit longer? It is frustrating to not
know what is going on in this little program. Exploration has been
fun until now. Now my flow is broken. Better to plan ahead next
time...huh. Maybe write some intermediate progress info to a log
file? But what kind of info? How unfortunate. Why do I have to
take care of this? I just want to explore and learn about the domain
objects at hand, not experience technical inconveniences.

Eventually, the script finished after roughly 3:30 minutes. The
programmer was frustrated by then. Later that day, she figured
that there is a significantly faster way to enumerate all objects:
SystemNavigation allObjects. Just about 200 milliseconds! And
1.5 seconds for the entire script. If only she knew before, flow might

1

https://orcid.org/0000-0002-7559-6035
https://orcid.org/0000-0002-3828-7778
https://orcid.org/0000-0002-4249-6003
Robert Hirschfeld
[PX/24] DRAFT – PLEASE DO NOT DISTRIBUTE



<Programming> ’24 Companion, March 11–14, 2024, Lund, Sweden Marcel Taeumel, Jens Lincke, and Robert Hirschfeld

have been retained. But trial-and-error is normal, mistakes will hap-
pen again. Progress indication would be comforting along the way.

Exploratory programming [2] is a practicewhere scripting thrives:
low risk, high reward. Programmers are eager to explore problem
and solution space with small code snippets, typically evaluated
in a context full of domain-specific data. Experimentation is en-
couraged, because failure does not lead to anxiety but growth and
understanding. There are scripting environments1 for all kinds of
general-purpose languages: Linux/Bash [11], Jupyter/Python [15],
Lively/JavaScript [5], Squeak/Smalltalk [4]. Especially the latter,
Smalltalk, has been known for its exploratory capabilities [13, 21]
because of its garbage-collected object space, blending program-
ming tools and user applications; a quite suitable (and forgiving)
scripting environment with its powerful suspend-edit-resume de-
bugger. We once tried to capture an experienced Smalltalker’s prac-
tice as follows [19]:

The exploratory mindset is an intensive form of
user-to-software mediation where programmers are
especially motivated to find a design that both works
and inspires: “I know it when I see it.” Programming
languages are expressive enough to unfold anything
from unsurprising complexity to surprisingly beauti-
ful simplicity. The latter is key.

It may be hard to learn and cherish because it is primarily about
finding trade-offs: code readability, execution performance, possible
nice-to-have features, minimizing dependencies while balancing
maintenance cost [18], to name a few. Scripting is a valuable com-
panion on this exploratory journey.

However, carefree experimentation can yield scripts that run
longer than expected, leaving programmers uncertain about what is
going on [20]. Frustration can set in quickly as “planning ahead” is
not part of formulating and testing hypotheses during exploration.
Instead, programmers expect a responsive system and (kind of)
live feedback [12]. They want to remain informed to maintain task
focus [9] and flow [1]. Especially when user interfaces support
direct manipulation [3] of visual objects [6], which can be possible
for arbitrary programming tools [17], programmers expect some
response. Script execution typically starts with a key press or mouse
click. Then what? For apparently simple scripts, we argue that
waiting for 1–4 seconds is okay [14, p. 445], not breaking flow. Task
complexity might raise this to 8–12 seconds, then some on-screen
information would be nice. After 15 seconds, well, programmers
might not even be sure whether the correct task is being performed
or they made a mistake.

This observation yields the research question of this paper:
How can we keep programmers informed about the
progress of unexpectedly long-running tasks without
adversely interfering with their programming activi-
ties?

While background execution and/or (regular) progress indication
is the answer for expectedly long-running tasks [10], our situation
is peculiar for its single-threaded, memory-safe, simple character-
istics. Programmers will not continue until a script has finished;

1Some programming languages feel indistinguishable from their execution environ-
ment and thus may not even flourish outside their usual “system” such as Smalltalk
without an image or Bash without a shell.

they are testing a specific thought. They are interested in a short
response time and are even willing to optimize a complex routine,
but only after they learned about its complexity. Thus, they are
likely to deliberately ignore (or forget about) existing push models
for progress indication in the system:
someTaskData

do: [:item | "costly operation" ]
displayingProgress: [:item | "info label" ].

Such extra code lines in between would obfuscate their script. They
might not even consciously use a loop method such as do:, just a
declarative expression like allSubInstances in the example above.
Library providers, on the other hand, are most likely omitting such
measures in low-level routines because there is no obvious con-
nection to the user interface and it would slow down optimized
algorithms (e.g., searching, sorting, enumerating).

We propose the concept of an automatic watchdog that is able
to supervise a script worker to extract and show task progress us-
ing pre-defined heuristics. As a result, programmers will notice
Unanticipated Progress Indication, even for low-level routines, as ex-
emplified in Figure 1. Using Squeak/Smalltalk as an object-oriented,
single-threaded, cooperative scripting environment, we argue that
simple heuristics for list enumeration or other stack patterns can
(1) keep users informed while (2) leaving scripts untouched and
(3) mostly retaining execution performance.

In section 2, we explain the vocabulary around tasks and their
progress, including how operating systems inform users through
resource counters. Framing our contribution toward Smalltalk char-
acteristics, we then describe the vices and virtues around suspend-
edit-resume debugging for manual progress exploration in section 3.
This paper’s main contribution lies in section 4, where we explain
the mechanics of how the watchdog works, including selected
heuristics for stack analysis. We discuss applicability and limita-
tions in section 5. Finally, we conclude our thoughts in section 6.

2 TASKS AND (MISSING) PROGRESS INFO
A task processes a certain amount of items. It may be composed of
sub-tasks working on other items. Such items belong to data struc-
tures such as lists, trees, and graphs. The work that is actually done
depends on the situation and purpose of each task. For example,
the sum might be aggregated from a list of numbers or the weights
in a treemap might be accumulated from the leaves up to the root.
Multiple complementing work is usually represented as composite
tasks, with an outermost one as the starting point. That root task
might be the entire script, just written by the programmer, waiting
to be executed. From the outside, a script can look unsuspicious
and small. Only a few lines of code. A quick response is expected.
However, multiple hidden sub-tasks might be involved. Depending
on the data items, such sub-tasks might take longer to finish than
usual. Note that exploratory programmers do not only write scripts
to verify assumptions or learn about an interface. They also add
new code to the system and write their scripts against that code.
Mistakes can happen along all such lines under control: endless
recursion, memory leaks, long garbage-collection pauses, to name
a few. If a script takes longer than expected, programmers want to
be informed about its progress, or at least learn about the kind of
sub-tasks involved.

2



Unanticipated Progress Indication <Programming> ’24 Companion, March 11–14, 2024, Lund, Sweden

Operating systems (OS) take care of their windows and processes.
One such window might host the scripting engine,2 taking longer
than usual to refresh its view. If one window stops accepting incom-
ing messages such as mouse clicks, it will be marked unresponsive
and maybe visually faded into white. As illustrated in Figure 2,
a so-called “Task Manager” can be used in concurrent or multi-
processing environments to monitor tasks (or processes) from the
outside. An unresponsive window can then be killed or restarted.
More interestingly, there are performance and resource counters for
each process such as CPU load, working-set memory, and open
file handles. Depending on the script, experienced programmers
might be able to derive a proper understanding of task aliveness.
They want to decide whether it is worth waiting or time to kill. In
rare circumstances, such counters might even indicate progress if
they correspond to code in the script. For example, if an algorithm
opens many files in the beginning and then closes them toward the
end, the counter for open file handles might reflect that progress.
In general, however, task managers are too coarse-grained to pro-
vide the expected level of detail so that programmers can actualy
understand what is going on in a long-running script.

Sometimes, programmers are able and willing to plan ahead. For
example, if you copy a larger file in a command-line or GUI interface,
you will most likely see a progress bar, maybe even a history of
transmission speed, and an estimated time-to-finish. File-copy is a
task with well-defined constraints and expectations. For a single
small file, you will probably not even notice intermediate feedback.
It will just be done immediately. While there are file-copy interfaces
without progress indication, users learned that a copy operation
can take its time, especially when floppy disks are involved. All in
all, if programmers plan ahead, they will probably follow a push
model that does not slow down the task noticeably:

Push model Task workers report progress information peri-
odically to a watchdog, which then visualizes3 that progress
for the user. Workers do not have to reduce their update
rate for performance reasons, only the visualization update
should be efficient and not slow down the task. Yet, copy-
ing thousands of smaller files, for example, a command-line
tool is usually much faster than the interactive GUI of the
Windows Explorer, both showing progress.

Pull model Task workers do not report progress on their own.
The watchdog will periodically extract information from the
worker’s involved data structures. An example are resource
counters (Figure 2), which can indicate task aliveness and
maybe even approximate progress indirectly.

Still, scripting means ad-hoc experimentation, not planning
ahead. And the designers of frameworks and libraries cannot pro-
actively push progress info from every little enumeration involved
in a low-level routine. Besides a dire performance impact, there
would be many “false-positive tasks” (or micro-tasks) with mean-
ingless descriptions, obfuscating the screen, rendering it even more

2There are engines (or runtimes) specific for profiling such as the VisualVM for Java
(https://visualvm.github.io), which offer language-specific counters and maybe some
insight into thread execution. For the scope of this paper, we assume that exploratory
programmers are using their normal environment, unaware whether their next script
would benefit from profiling or not. Our approach is lean and always active.
3In the simplest sense, one might just print dots to stdout to show task aliveness. So,
the worker could directly write to a log file.

Figure 2: Operating systems (here: Microsoft Windows) offer
various performance and resource counters for each task
(here: process). Users can monitor changes to draw rough
conclusions about task aliveness. (Process Explorer 17.05,
https://sysinternals.com)

irritating than a frozen window. Consequently, could there be a pull-
based approach that is more fine-grained than what OS resource
counters offer? Many scripting environments have simple rules
for task scheduling: single-threaded, cooperative, maybe priority-
based. Some of them provide advanced means for introspection,
analyzing task state fromwithin the environment, even down to the
level of source code to fetch descriptive labels. In Squeak/Smalltalk,
we found a promising contestant for such an environment that
is able to foster carefree exploration and scripting, even for the
not-so-experienced programmer.

3 SMALLTALK: ON-DEMAND DEBUGGER AS
MAKESHIFT TASK INSPECTOR

Squeak runs in a single-threaded interpreter loop, typically within
the OpenSmalltalk VM [8]. Concurrent behavior is realized through
green threading, which manifests as cooperative scheduling of sev-
eral Squeak processes [16]. Preemption is possible because processes
have priorities, and processes can wait for (platform) synchroniza-
tion objects such as semaphores. One important high-priority pro-
cess is the user interrupt watcher. When the user hits [CMD]+[.],
a certain semaphore is signaled, which wakes up that watcher,
which then opens a debugger on the process that just got pre-
empted [4]. For example, when a programmer types a code snippet
into a workspace and then evaluates it, the single moderate-priority
Morphic [6] process fires up the compiler and runs the resulting do-
it method (or bytecode). Of course, a long-running script will block4
Morphic and thus make the system appear unresponsive.5 While
it is actually running that script, no user input or other event han-
dlers or animation timers will be processed until the script finishes.
There is one6 exception: the user-interrupt shortcut [CMD]+[.],

4Yes, some scripts could run in the background. But the increased complexity for data
synchronization interferes with low-effort, carefree exploration.
5There can be many reasons for a frozen Squeak. The system is self-sustaining. Pro-
grammers might thus break both applications and system tools. For example, putting
a breakpoint into font-rendering routines will lock yourself out.
6Any unhandled error will also interrupt the script and result in a debugger. A new
Morphic process will be spawned in this case to restore interactivity. The system could
be “flooded” with debuggers this way, but there are selected precautions in place to
avoid repeated execution of erroneous code.

3

https://visualvm.github.io
https://sysinternals.com


<Programming> ’24 Companion, March 11–14, 2024, Lund, Sweden Marcel Taeumel, Jens Lincke, and Robert Hirschfeld

which will preempt the Morphic process and present a debugger as
depicted in Figure 3.

Inside the debugger, programmers can inspect all kinds of in-
formation around the suspended process. They have access to the
entire stack, meaning all contexts or currently active methods. Each
(reified) context object then refers to

• the receiver object of the call,
• the source code and program counter,
• objects behind argument names,
• objects behind temporary names if reached, and
• the next context.

Given that the script’s task and sub-tasks lie somewhere on this
stack, programmers just have to figure out where to look. In Fig-
ure 3, a familiar do: is selected, which probably enumerates over
some work items. The receiver is a collection, whose size is the
goal, the current index the task progress. A context below, it reads
subclassesDo:, which makes a somewhat descriptive label for a
sub-task, explaining why Object allSubInstances takes so long.
The entire class hierarchy is being enumerated to then fetch in-
stances for each class separately; this is ineffective as it involves re-
dundant filtering and unnecessary ordering. Anyway, the Smalltalk
debugger acts as a makeshift task inspector. Programmers are able
to navigate from script code to script process and back. Just like
that. At any time.

Task (or process) information and context reification comes at a
cost. The virtual machine does not maintain context objects during
normal code execution, only for the debugging case. For example,
just accessing the program counter once during a simple 3+4 can
slow down the script 10×. And the garbage collector will also clean-
up context objects later, which takes extra time. Luckily, accessing
further stack frames does not increase the slow-down that much:
[3+4] bench.
'296,000,000 per second. 3.4 nanoseconds per run.

0.0 % GC time.'
[thisContext pc. 3+4] bench.

'26,300,000 per second. 38 nanoseconds per run.
10.4 % GC time.'

[thisContext sender sender sender pc. 3+4] bench.
'13,000,000 per second. 77 nanoseconds per run.
5.7 % GC time.'

This performance impact has implications for any watchdog that
wants to supervise a process’ stack. The sampling rate should mod-
erately reflect the actual need for details. Oversampling might neg-
atively affect script execution in general. If programmers learn that
“no info” means fast and “progress info” means slow, then we would
have very little improvement over the regular on-demand debugger
as a makeshift task inspector. They should not have to think about
it but keep such a watchdog enabled all the time.

The reflective means that enable the Smalltalk debugger, namely
stack inspection and code simulation, have “always” been enabling
another powerful tool for profiling: theMessage Tally. Programmers
can spyOn: a code snippet, which will activate a watchdog that
samples call stacks at a certain rate, producing a slice of the call tree
as it could be observed. They can also tallySends:, which will
employ code simulation to record the entire call tree as it happened.
Spying is usually much faster compared to tallying, and it yields

Figure 3: Users can interrupt a blocking process anytime via
[CMD]+[.]. Stack frames reveal tasks and sub-tasks as well as
their current progress. Yet, only experienced programmers
know what to look for (here: index and indexLimiT).

expedient information for most situations where programmers
want to hunt down performance issues. It is a trade-off between
level-of-detail and performance. Note that programmers benefit
from keeping their exploratory flow, collecting information in an 80-
20 manner. It does not have to be perfectly accurate. Good-enough
is fine as long as it makes sense. Can we provide such efficiency for
progress indication?

4 UNANTICIPATED PROGRESS INDICATION
We outlined the programmer’s exploratory mindset and technical
constraints of a scripting environment as a baseline for our ap-
proach to Unanticipated Progress Indication. Now, we will explain
the mechanics of an automatic watchdog that periodically analyses
the stack of a worker process to yield an experience as sketched
in Figure 1. To maintain the exploratory flow and curiosity, we
require non-invasive means for (1) task identification and progress
display as well as (2) task suspension, inspection, and resumption.
Following a pull model or sampling approach, we thus cannot ex-
ecute code before or after a task as we might miss such events.
Any heuristic should also minimize costs, avoiding extra computa-
tion such as counting nodes in a tree when the structure has no
such information readily available. Thus, some identified tasks will
have a complete description while others won’t. We argue for the
following selection of features:

Must-have Task identity (referring to worker stack), task label
(referring to domain code), task display (referring to screen
pixels)→ Unanticipated Task Indication

Should-have Progress information (i.e., numbers for start,
stop, and current position) → Unanticipated Progress Indica-
tion

Nice-to-have Estimated time-to-finish [7], maybe coordinated
with sub-task estimations → Toward Solving the Halting
Problem [22] ;-) for arbitrary scripts

The interactive aspect of progress indication is basically for free:
Smalltalk processes can be suspended, inspected, and resumed at
any time. So, once informed, programmers can decide whether to

4



Unanticipated Progress Indication <Programming> ’24 Companion, March 11–14, 2024, Lund, Sweden

abort a task to refine a script. Finding proper heuristics for task
analysis, however, that is the main challenge.7

Our watchdog is configured with a set of heuristics, which it
considers fully in every tick (e.g., every 250 milliseconds). Each
heuristic exploits characteristics about the system’s frameworks or
libraries, everything that might appear on the stack as in Figure 4.
Such generic hints can be complemented with specific patterns, only
found in particular parts of the application under construction. We
focus on generic hints because programmers can rely on those for
every new task they begin:

Task identity Find the context object that represents work to
be done. It will be gone from the stack if the corresponding
task is finished. Examples include loop methods or the be-
ginning of recursions. In Squeak, a simple test for certain
receiver classes (e.g., Collection) and message selectors
(e.g., #whileTrue:) can be sufficient to avoid false-positives.
Workspace do-its or #bench (see above) would require extra
hints.

Task label From the identity context, find the next context ob-
ject that points into domain code to then extract descriptive
data that users can understand. Examples include package-
name tests and simply showing the first specific message
selector. In Squeak, the printString of a context can serve
as task label. No need for costly code analysis. Identity con-
texts can be their own label such as for workspace do-its.
They can also extend a generic label with details about the
current item in the task if they have access to progress.

Task progress In (or around) the identity context, find num-
bers that represent steps in the task: first, last, current. Then
the task display can derive the percentage done. Examples
include lists with a growing index and the changing depth of
recursions. Keep the percentage growing, and consider tail
recursions to not do all the work at 100%. In Squeak, collec-
tions enumerate from 1 to their size, the current step is in a
temporary called index or i. For lists of code statements, the
growing program counter can indicate progress (startpc,
endpc, pc).

Sub-tasks will occur when multiple task identities are found. In the
single-threaded scripting environment, we expect that no heuristics
find tasks in the lower part of the main (GUI) loop.

During the lifetime of each task, the watchdog will repeatedly
query (and update) labels and progress info. A practical sampling
rate is about every 250 milliseconds, directly connected with display
update, resulting in 4 frames-per-second (FPS). Shorter tasks will
not even be sampled, longer tasks can accomplishmuchworkwithin
that time. For simple tasks taking 1–4 seconds [14, p. 445], users
will be informed about progress 3–15 times. Within the first 250
milliseconds, theymight not even notice a hiccup given that they are
in a working environment, not a game with elaborate animations
targeting 60 FPS. After several measurements, the watchdog can
start estimating the time-to-finish (ETA). Note that the time to
process each item in a task might vary. Especially for arbitrary steps
(or statements) in a script or heterogeneous collections, progress
7Note that, in this paper, we just provide hints on what interesting stack patterns might
look like. We have no definite answer, not even for processes in Squeak/Smalltalk. In
your own scripting environment, we suggest looking at how loops are represented.
From there, other patterns might emerge.

Figure 4: A process stack as data source for task analysis.
Frames alternate between library code and domain code.
Heuristics are defined for task ID and task label respectively.
The number of frames analyzed can influence the overall per-
formance. See Figure 3 for exemplary stack info. In Squeak,
a stack frame is called “context object.”

does not have to be linear. We think that a sliding window of about
2–8 seconds can give somewhat reliable results for ETA, not being
more detailed than “less than 10 seconds left”. Showing the elapsed
time per task can further help users to decide whether it is worth
to wait longer.

Having task labels and progress info (and maybe even ETAs),
users finally expect to (1) see something and (2) interact with some-
thing as promised in Figure 1. Note that the watchdog is not the
environment’s GUI process but a high-priority helper. In general,
library interfaces and structures for the GUI might be reserved for a
specific process to avoid data corruption. Luckily, also due to green
threading, arbitrary Squeak processes can safely modify screen
pixels and poll for user-input events [16], at least while Morphic
itself appears unresponsive, evaluating a script. The watchdog will
not be preempted by Morphic but should hurry to not slow down
the script. So, the watchdog repeats the following steps in a loop:

(1) Detect and update task information
(2) Display task information on screen
(3) Process user-input events (optional)
(4) Wait for 250 milliseconds

To avoid visual glitches, the affected screen portion should be
backed up and restored as sub-tasks appear and finish. Note that pro-
cessing user input remains optional, because there is still [CMD]+[.]
as a reliable keyboard shortcut to invoke the debugger. Yet, click-
able buttons for task suspension, inspection, or cancellation offer
a better affordance in a world of direct manipulation. Also note
that the underlying host environment (or operating system) can
provide additional resources to construct an interactive progress
dialog. If possible, we think it is more immersive to remain within
the scripting environment.

The watchdog can be notified explicitly about tasks and progress
change. That is, our approach integrates (or can integrated with)
existing push models such as Squeak’s do:displayingProgress:

5



<Programming> ’24 Companion, March 11–14, 2024, Lund, Sweden Marcel Taeumel, Jens Lincke, and Robert Hirschfeld

mentioned before. If heuristics can identify such “push tasks” on the
stack, scripts can push progress to the watchdog, displayed in the
next analysis cycle. Both means complement each other because,
sometimes, programmers can plan ahead (e.g., file-copy progress),
and other times, they just want to dive into exploration and keep
the flow (e.g., do-it progress). Indirect sampling heuristics might
be more challenging to express efficiently, compared to a simple,
direct notification directly in the source code. A trade-off remains.
System maintainers can provide initial heuristics for the watchdog.
Programmers might discover better ones during exploration. As
tool building is part of exploratory programming in general, the
definition of new heuristics can be considered tool building as well.

5 DISCUSSION
This section contains selected thoughts about applicability, use-
fulness, and limitations of our approach. While we would like to
have such a feature in other scripting environments, we have only
prototyped it for Squeak/Smalltalk, but with success. In other envi-
ronments, scheduling constraints and overall process management
might impose different rules for such progress watchdogs.

Implementation. As illustrated in Figure 5, we implemented a
simple heuristic for collection enumeration, deriving a task label as
described before and manually explored in Figure 3:

• For task identity, context objects of Array>>do: can be found
and recalled on the stack during enumerations. Such contexts
are library code in our model in Figure 4.

• For task label, each identity’s sender provides a descriptive
print-string such as Morph>>subclassesDo:. Such contexts
are domain code in our model in Figure 4.

• For task progress, each identity’s temporaries index and
indexLimiT represent current and last. First is always 1.

For the root task, the do-it method, we use the program counter as
progress. The watchdog analyses up to 100 stack frames, but the
depth while evaluating our example script was typically smaller.
We could not measure a noticeable difference in execution time; it
remained around 3:30 minutes +/− 5 seconds. However, there was
a little bit more work for the garbage collector to do, probably due
to the reified context objects from task analysis. Note that any other
activity in the environment can impact script performance, because
it is still single-threaded. Yet, we could test our assumption that a
sampling rate of 250 milliseconds is a fair trade-off between task
info and work load, at least with the heuristics we implemented.

Interference. There will always be some effects when a watchdog
takes its time analyzing the stack of a worker process. The quality
of the work will not be affected unless timing constraints are part
of that quality. Examples include benchmarking routines such as
#bench and #timeToRun in Squeak. While heuristics should be
minimized, deeply recursive patterns on the stack might require
a very high analysis depth to find all the tasks, meaning more
context objects have to be reified and GC’ed later. If the window of
analysis is too small, the actual root task can be missed, resulting
in flickering on the screen as sub-tasks come and go. Interference
can also happen between multiple high-priority watchdogs. For
example, Message Tally (see above) might already be active, slowing

Figure 5: Unanticipated Progress Indication in Squeak, eval-
uating a Smalltalk script. Every 250 ms, a watchdog probes
the UI process stack for collection enumerations, extracts
progress metrics, and finds task labels in nearby contexts.
We simplified the dialog as proof-of-concept but extra con-
trols like in Figure 1 are possible. For interaction, a click on
a progress bar will pause all tasks and open a debugger.

down the worker process even more. Some agreements between
(high-priority) processes could help managing such choreography.

Quality. Some data structures maintain work items in a way that
makes it challenging for a watchdog to extract task progress. Ex-
amples include streams where clients wait for a null byte or linked
lists without index-based access. Actual numbers are required to
calculate progress. Even iterative tree traversal will only maintain
a sliding window of the next nodes, rendering it impossible with a
sampling approach to understand the current position and the goal.
Yes, the task itself can at least be identified and labelled. That is
why we classified progress info as should-have, not must-have. An
(updating) overview of active tasks and sub-tasks is added value in
an otherwise unresponsive environment. For recursive algorithms,
it depends on the data structure being processed whether progress
can be derived. A simple list will probably shrink to nothing while
a complex tree (or graph) is unlikely to show a meaningful, pre-
dictable pattern on the stack. At least the beginning of recursions
can be used to identify (and label) tasks.

Maintenance. The programmer who maintains heuristics for li-
braries or frameworks is a tool builder, configuring the operations
of the watchdog. Heuristics become part of the tool landscape, its
code in need to be updated when dependencies change. We ana-
lyzed context objects and source code using representations and
meta-information that might adapt in the future. For example, most
enumerations result in a reference of #whileTrue: in the source
code, but there is no actual message send in the corresponding
byte code. It will be optimized by the compiler, a push here and
a jump there. Luckily, the meta-data (here: literals) still contains

6



Unanticipated Progress Indication <Programming> ’24 Companion, March 11–14, 2024, Lund, Sweden

#whileTrue: as a symbol, which we query in heuristics. In gen-
eral, similar-looking scripts can end up in different methods, which
means that the corresponding names for temporaries can be dif-
ferent, which means that multiple heuristics are needed to extract
task progress from loop methods:

(1 to: 10) asArray do: ... Collection >> #do:
(1 to: 10) do: ... Interval >> #do:
(1 to: 10 do: ...) (inlined)

Exploratory programmers should not be bothered to express scripts
in a certain form that matches the existing heuristics. This would be
comparable to following a push model, which they usually ignore
in the first place. Instead, heuristics should be adapted (by tool
builders) to cover more and more exploratory scenarios, increasing
the robustness of Unanticipated Progress Indication.

Visual Glitches. An unresponsive system can be frustrating; a
flickering or glitching progress dialog can be unsettling. As we
discussed the quality of heuristics above, incorrect or unexpected
task info can still face the user. Hinted in Figure 5, for example, the
root task (or do-it) has an ETA smaller than its first sub-task. In
our implementation, tasks do not negotiate their guesses; maybe
they should. How would endless recursion look like? The screen
would be filled with sub-tasks at some point. Why is a certain
progress bar not growing but shrinking? The stop condition is
probably changing, or the current position might be moving back-
wards; maybe a recursion-heuristic is broken. Why is that label
so incomprehensible? Maybe because the corresponding domain
method is just badly named. We think that watchdog heuristics
cannot and should not compensate for bad code. They might hint at
a refactoring that should be done. Who knows: Can simple, effective
task-progress heuristics even lead to better code quality in the software
under construction?

6 CONCLUSION
In a world full of unclear requirements and new applications for soft-
ware every day, exploratory practices help programmers manage
even steep learning curves in unfamiliar domains. Their tools and
environments allow for experimenting and tinkering. Executable
forms of explicated ideas, the program source code, are to be manip-
ulated. “Scripting” is a skill, comparable with high-level program-
ming. Programmers expect quick feedback for every script they
evaluate. They make mistakes, but they will learn from iterations.
Not everything works as envisioned; trade-offs must be found;
results can nevertheless inspire and motivate. We presented Unan-
ticipated Progress Indication as effective means that support this
exploratory journey toward high-quality software, for an expedient
programming experience.

ACKNOWLEDGMENTS
Sincere thanks go to all PX/24 reviewers, who provided valuable
feedback by discussing this topic thoroughly. We are also thankful
to Lukas Böhme, who kept asking interesting questions that helped
clarify scope and details. We gratefully acknowledge the finan-
cial support of the HPI Research School “Service-oriented Systems
Engineering” (https://hpi.de/en/research-schools/hpi-sse.html).

REFERENCES
[1] Mihaly Csikszentmihalyi. 2008. Flow: The Psychology of Optimal Experience.

Harper Perennial Modern Classics.
[2] Richard P. Gabriel. 2014. I Throw Itching Powder at Tulips. In Proceedings

of the 2014 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Portland, OR, USA). ACM, 301–319.
https://doi.org/10.1145/2661136.2661155

[3] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. 1985. Direct
Manipulation Interfaces. Human-Computer Interaction 1, 4 (12 1985), 311–338.
https://doi.org/10.1207/s15327051hci0104_2

[4] Daniel H. H. Ingalls. 2020. The Evolution of Smalltalk: From Smalltalk-72 Through
Squeak. In Proceedings of the 4th ACM SIGLAN History of Programming Languages
Conference (HOPL IV). ACM, 1–101. https://doi.org/10.1145/3386335

[5] Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel Taeumel,
and Tim Felgentreff. 2017. Designing a live development experience for web-
components. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Programming Experience (Vancouver, BC, Canada). ACM, 28–35. https://doi.org/
10.1145/3167109

[6] John H. Maloney. 2002. An Introduction to Morphic: The Squeak User Interface
Framework. Prentice Hall, Chapter 2, 39–67.

[7] Joachim Meyer, David Shinar, Yuval Bitan, and David Leiser. 1996. Duration
estimates and users’ preferences in human-computer interaction. Ergonomics 39,
1 (1996), 46–60. https://doi.org/10.1080/00140139608964433

[8] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls. 2018. Two
decades of smalltalk VM development: live VM development through simulation
tools. In Proceedings of the 10th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (Boston, MA, USA). ACM, 57–66. https:
//doi.org/10.1145/3281287.3281295

[9] Yoshiro Miyata and Donald A. Norman. 1986. Psychological Issues in Support of
Multiple Activities. In User Centered System Design: New Perspectives on Human-
Computer Interaction, Donald A. Norman and StephenW. Draper (Eds.). Lawrence
Erlbaum Associates, Inc., 265–284.

[10] Brad A. Myers. 1985. The importance of percent-done progress indicators for
computer-human interfaces. ACM SIGCHI Bulletin 16, 4 (1985), 11–17. https:
//doi.org/10.1145/1165385.317459

[11] Eric S. Raymond. 2004. The Art of UNIX Programming. Addison-Wesley Profes-
sional Computing Series.

[12] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding. The Art, Science, and
Engineering of Programming 3, 1 (2018), 1:1–1:33.

[13] Beau Sheil. 1998. Datamation®: Power Tools for Programmers. Morgan Kaufmann,
Inc., Chapter 33, 573–580. https://doi.org/10.1016/B978-0-934613-12-5.50048-3

[14] Ben Shneiderman and Catherine Plaisant. 2010. Designing the User Interface:
Strategies for Effective Human-Computer Interaction (5 ed.). Addison-Wesley.

[15] Jeremy Singer. 2020. Notes on Notebooks: Is Jupyter the Bringer of Jollity?. In
Proceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! 2020).
ACM, 180–186. https://doi.org/10.1145/3426428.3426924

[16] Marcel Taeumel and Robert Hirschfeld. 2016. Evolving User Interfaces From
Within Self-supporting Programming Environments: Exploring the Project
Concept of Squeak/Smalltalk to Bootstrap UIs. In Proceedings of the Program-
ming Experience 2016 (PX/16) Workshop (Rome, Italy). ACM, 43–59. https:
//doi.org/10.1145/2984380.2984386

[17] Marcel Taeumel and Robert Hirschfeld. 2021. Exploring modal locking in window
manipulation: Why programmers should stash, duplicate, split, and link compos-
ite views. In Proceedings of the Programming Experience 2021 (PX/21) Workshop
(Online, United Kingdom). ACM, 14–20. https://doi.org/10.1145/3464432.3464433

[18] Marcel Taeumel and Robert Hirschfeld. 2022. Relentless Repairability or Reckless
Reuse: Whether or Not to Rebuild a Concern with Your Familiar Tools and
Materials. In Proceedings of the 2022 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!
2022). ACM, 185–194. https://doi.org/10.1145/3563835.3568733

[19] Marcel Taeumel, Jens Lincke, Patrick Rein, and Robert Hirschfeld. 2022. A
Pattern Language of an Exploratory ProgrammingWorkspace. InDesign Thinking
Research: Achieving Real Innovation. Springer, 111–145. https://doi.org/10.1007/
978-3-031-09297-8_7

[20] Marcel Taeumel, Patrick Rein, Jens Lincke, and Robert Hirschfeld. 2023. How to
Tame an Unpredictable Emergence? Design Strategies for a Live-Programming
System. In Design Thinking Research: Innovation–Insight–Then and Now. Springer,
149–166. https://doi.org/10.1007/978-3-031-36103-6_8

[21] Jason Trenouth. 1991. A Survey of Exploratory Software Development. Comput.
J. 34, 2 (1 1991), 153–163. https://doi.org/10.1093/comjnl/34.2.153

[22] Alan Mathison Turing et al. 1936. On computable numbers, with an application
to the Entscheidungsproblem. J. of Math 58, 345-363 (1936), 5.

7

https://hpi.de/en/research-schools/hpi-sse.html
https://doi.org/10.1145/2661136.2661155
https://doi.org/10.1207/s15327051hci0104_2
https://doi.org/10.1145/3386335
https://doi.org/10.1145/3167109
https://doi.org/10.1145/3167109
https://doi.org/10.1080/00140139608964433
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/1165385.317459
https://doi.org/10.1145/1165385.317459
https://doi.org/10.1016/B978-0-934613-12-5.50048-3
https://doi.org/10.1145/3426428.3426924
https://doi.org/10.1145/2984380.2984386
https://doi.org/10.1145/2984380.2984386
https://doi.org/10.1145/3464432.3464433
https://doi.org/10.1145/3563835.3568733
https://doi.org/10.1007/978-3-031-09297-8_7
https://doi.org/10.1007/978-3-031-09297-8_7
https://doi.org/10.1007/978-3-031-36103-6_8
https://doi.org/10.1093/comjnl/34.2.153

	Abstract
	1 Introduction
	2 Tasks and (Missing) Progress Info
	3 Smalltalk: On-demand Debugger as Makeshift Task Inspector
	4 Unanticipated Progress Indication
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

